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Synchronization of the coupled neuronal oscillators with multiple connections of different coupling nature is
analyzed using the phase-model reduction method. Each coupling connection contributes to the dynamic
behavior of the system in a complex nonlinear fashion. In the phase-model scheme, the contribution of the
individual connections can be separated in terms of the effective coupling functions associated with each
connection and a linear superposition of them provides the total effective coupling of the coupled system. The
case of multiple connections with various conduction time delays is also examined, which is shown to be
capable of promoting synchronization over an ensemble of spatially distributed neuronal oscillators in an
efficient way.
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I. INTRODUCTION

The brain is a complex dynamical system consisting of an
extraordinarily large number of units of neurons with even a
larger number of interconnections among them. Synchronous
firing of neurons has received much attention in relation to
the generation of brain wave rhythms and information pro-
cessing at various aspects in the neuronal systems �1–3�.
Synchronization has also been addressed as an important is-
sue in diverse fields ranging from the physical and biological
to social sciences �4,5�.

Rhythms in the various frequency ranges are found in
many parts of the nervous system, which are considered to
be associated with information processing in the brain. The �
�30–80 Hz� and the � �12–30 Hz� rhythms have been ob-
served in the CA1 area of the hippocampus �6,7�. Recently,
the underlying mechanism for the stability of these rhythms
has been studied with the neuronal oscillator network model
for the hippocampal CA1 area �8,9�. These works have
shown that the frequency range of the stable rhythms is cor-
related with the range of the interactions among the neuronal
units; the � rhythms are stable only in the local area, and in
the presence of significant conduction time delay in the long-
range interaction only the � rhythms remain stable. Espe-
cially, it has been pointed out that the role of long-range
excitatory connections is essential for � rhythm synchroni-
zation. However, the separate contributions of individual
connections in multiply connected neuronal oscillators have
not been thoroughly understood.

The time-delayed coupling between neuronal oscillators
arises naturally from the neurophysiological origins in pro-
cesses such as synaptic transmission and axonal propagation
of the action potentials. The effect of the time delay on the
stability of synchronization has been studied extensively in a
wide class of neuronal oscillator models including integrate-

and-fire neurons �10,11�, FitzHugh-Nagumo neurons �12�,
and Hodgkin-Huxley neurons �13,14�.

The phase oscillator model has been introduced for
analyzing the dynamics of coupled nonlinear oscillators �15�.
The phase description of each oscillator enables us to
reduce drastically the complexity of the original system.
The most valuable benefit of the reduction might be the fea-
sibility of estimating the effective coupling between oscilla-
tors, which is attained via the effective coupling function.
The phase-model analysis has been successful especially in
analyzing the various synchronization phenomena
�13,16–20�.

In this paper we study coupled neuronal oscillators that
have multiple connections, focusing on the roles of the indi-
vidual connections in their contribution to the synchroniza-
tion. As an example, we reexamine the hippocampal CA1
model in which the neuronal oscillator units are connected
with multiple connections of different synaptic nature. We
exploit the phase-model reduction method to explore the
complex nonlinear behavior of the original system; in this
scheme, the total effective coupling between oscillators is
simply given as a linear superposition of the individual ef-
fective coupling arising from each connection. The results
from the phase-model analysis are shown to be consistent
with direct simulations of the original system. The nonlinear
behavior of the coupled system is also presented with the
aid of the associated bifurcation diagram. Synchronization
over an ensemble of spatially distributed neuronal oscillators
is also examined by incorporating different conduction
time delays into the multiple connections. It is shown that
multiple connections with different time delays can promote
synchronization over an oscillator ensemble in an efficient
way.

The paper is organized as follows. Section II decribes
briefly the phase-model reduction method. A simplified ver-
sion of the hippocampal CA1 model as an example of the
coupled neuronal oscillators with multiple connections is de-
scribed in Sec. III with some details given separately in the
Appendix. Some previous results relevant to the present in-
terests are also included. In Sec. IV, the coupling connections
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of different natures are considered and the roles of individual
connections are analyzed. Section V treats the case of the
coupled system which has multiple connections of the
various conduction time delays. Finally, a summary and
discussions are given in the last section.

II. PHASE-MODEL REDUCTION METHOD

To illustrate the method we consider a system of two
identical limit-cycle oscillations of period T coupled with
multiple connections:

dX1,2

dt
= F�X1,2� + �

i

cip
i�X1,2,X2,1� , �1�

where X j is the state vector of the jth oscillator, F the un-
coupled vector field, pi the coupling through the ith connec-
tion, and ci the corresponding coupling strength, respectively.

The phase model applies in the limit of weak coupling
where the coupling raises only a negligible perturbation to
the limit cycle of the uncoupled oscillators �15�. The phase
variables �1 and �2 can be introduced to parametrize the
evolution of the vector X0 on the limit cycles of the un-
coupled oscillators: each phase � satisfies d��X0� /dt=�,
where �=2� /T is a constant. The definition of the phase can
be also extended over the whole state space.

In the presence of a perturbation, as for the case of the
coupled oscillators, the phase dynamics is modified as

d�1

dt
= � + �

i

ci�
i���� ,

d�2

dt
= � + �

i

ci�
i�− ��� , �2�

where the phase difference is denoted as ����1−�2. The
effective coupling function �i associated with pi is given as

�i���� =
1

2�
�

0

2�

Z��� · pi��,���d� , �3�

where the sensitivity function defined as Z������X��X0
measures the phase-dependent response of the uncoupled os-
cillator �X0� to the perturbation.

The interplay between two oscillators is often described
by the evolution of the phase difference ��, which is
shown to be determined solely by the antisymmetric
part of the effective coupling function: �−

i ����=�i����
−�i�−���. That is, the dynamics of �� is given as

d��

dt
= �−

total���� = �
i

ci�−
i ���� . �4�

The total effective function is just a linear combination of
the effective coupling functions associated with each cou-
pling connection. The zeros of �−

total are the fixed points of
Eq. �4� which correspond to the phase-locked states and their
stabilities are determined from the slope of �−

total at the cor-
responding fixed points; negative slope means that the fixed

point is a stable state and the nearby �� dynamically con-
verges to the fixed point. Positive slope means that the fixed
point is an unstable state and the nearby �� dynamically
diverges away from the fixed point. The amplitude of �−

total

determines the convergence �divergence� rate at the fixed
point.

III. COUPLED NEURONAL OSCILLATORS
WITH MULTIPLE CONNECTIONS

In this paper as an example of the coupled neuronal os-
cillators with multiple connections we use the model for the
hippocampal CA1 area of the brain that has been adopted to
explore the dynamic stability of the gamma and the beta
rhythms �8,9�. Here the model is more simplified to focus on
the exploration of the multiple connections between coupled
neuronal oscillators.

A schematic diagram for the columnar structure of the
CA1 model is presented in Fig. 1. Each column consists of
one excitatory neuron �E cell� and one inhibitory neuron �I
cell�. The intracolumnar connections bind two cells into an
oscillator. That is, each column is regarded as an oscillator
unit. The intercolumnar connections then provide coupling
between two neuronal oscillators. The intercolumnar cou-
plings can be of long range, and such an effect is considered
in the model by incorporating the conduction time delay as is
shown in the later section.

The membrane voltage dynamics of the E cell is de-
scribed by the conductance-based neuronal model of
Hodgkin-Huxley type:

C
dV

dt
= − gl�V − El� − gNam

3h�V − ENa� − gKn4�V − EK�

− gAHPw�V − EK� − Ie
syn + Ie

appl. �5�

The equation for the I cell is identical except that there is
no after-hyperpolarization �AHP� current—i.e., gAHP=0; the
AHP current arises from a type of ion channels with the
nature of slow K conductance. We will use the subscripts e

FIG. 1. Schematic diagram of the coupled neuronal oscillator
model. Each oscillator unit, denoted by a box, consists of one
excitatory neuron �E cell� and one inhibitory neuron �I cell�.
The synaptic connections are denoted using g’s for the intraco
lumnar connections and c’s for the intercolumnar connections.
The subscripts of the variables are given following the “from-to”
rule; cei refers to the connection from the E cell to the I cell, for
instance.
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and i to distinguish symbols for the excitatory and inhibitory
cells, respectively, whenever it is needed. The variables m, h,
n, and w describe the gating dynamics for the ion flow at
each ion channel, and the governing equations are summa-
rized in the Appendix.

The synaptic currents can be grouped into two classes:
intracolumnar and intercolumnar synaptic currents—that
is, Ie

syn= Ie
intra+ Ie

inter and Ii
syn= Ii

intra+ Ii
inter. Each term is given

as

Ie
intra = giesi�t��V − Einh� ,

Ie
inter = cees̄e�t��V − Eex� + cies̄i�t��V − Einh� ,

Ii
intra = geise�t��V − Eex� ,

Ii
inter = ceis̄e�t��V − Eex� + ciis̄i�t��V − Einh� , �6�

where the g’s are the conductances of the intracolumnar syn-
aptic connections, while the c’s are the conductances of the
intercolumnar synaptic connections. In all simulations, we
set gie=1.0, and gei=0.3. The variables s�t� and s̄�t� describe
the temporal variation of the synaptic currents from the in-
tracolumnar and the intercolumnar presynaptic cells, respec-
tively. Their governing equations are given in the Appendix.
Note that the barred and unbarred variables satisfy the same
form of the equations. The parameters Eex and Einh are the
postsynaptic reversal potentials for the excitatory and inhibi-
tory synapses, respectively. All the parameters are set in ac-
cordance with the standard experimental setup and are also
presented in the Appendix.

From typical simulations for the single column oscillator,
we find that either the increase of Ie

appl or the decrease of
gAHP results in the higher firing rate of the E cell; these
parameters modulate the excitability of the E cell in the op-
posite directions �9�. It has been observed that various states
of phase-locked firings between the E cell and I cell arise in
which the ratio of the firing rates of the cells is determined
depending on the magnitudes of the two parameters Ie

appl and
gAHP for a fixed value of Ii

appl. For example, when gAHP=0,
Ie

appl=7.9, and Ii
appl=0.5, the column oscillator is 1:1 locked;

the E cell and I cell fire synchronously. Meanwhile, when the
excitability of the E cell is suppressed by increasing
gAHP—for example, when gAHP=1—the column oscillator
becomes 1:2 locked; the I cell fires twice during one firing
period of the E cell.

In the hippocampal CA1 model, the synchronized firing
of an ensemble of columnar oscillators that are all 1:1 phase-
locked is responsible for the generation of the � rhythm,
while the synchronization of the 1:2 phase-locked oscillators
is responsible for the generation of the � rhythm �9�. The
existence of the 1:2 locking at each oscillator alone is, how-
ever, insufficient for the generation of the � rhythm. That is,
the columns in the � oscillation should be synchronized and
the synchronization should be a stable state as well. Previous
works have shown that the sufficient condition is fulfilled
with the aid of the long-range intercolumnar excitatory
synaptic connections �8,9�.

All the simulations shown in this paper have been done in
the parameter range where each column oscillator is in the
1:2 locking state. Specifically, we set gAHP=1, Ie

appl=7.9, and
Ii

appl=0.5. The coupled neuronal oscillator system is shown
to have various stationary states of the phase-locked relation.
We then focus on analyzing the effect of the multiple synap-
tic connections on the stability and the bifurcation of those
stationary states.

IV. MUTIPLE CONNECTIONS OF DIFFERENT
COUPLING NATURE

The limit cycle X0 and the sensitivity function Z��� are
numerically calculated. The normalized effective coupling
functions for each synaptic connection are obtained from the
following integrations �14,15�:

�ee���� =
1

2�
�

0

2�

Ze���s̄e����Ve���d� ,

�ii���� =
1

2�
�

0

2�

Zi���s̄i�����Vi��� + 80�d� ,

�ie���� =
1

2�
�

0

2�

Ze���s̄i�����Ve��� + 80�d� ,

�ei���� =
1

2�
�

0

2�

Zi���s̄e����Vi���d� . �7�

Here the functions Ze��� and Zi��� denote the Ve and Vi

components of Z���, respectively.
The antisymmetric part of the normalized effective cou-

pling function for each synaptic connection is shown in
Figs. 2�a�–2�d�. In each plot the fixed points are denoted
using squares for the stable points and circles for the unstable
points. The temporal evolution of �� starting from different
initial conditions is also shown in the corresponding
right panels in Figs. 2�e�–2�h�. The behavior of the effective
coupling function and the evolution of �� are shown for
each connection separately. The details of the analysis are
summarized below for each synaptic connection.

�i� E-E connection. The function �−
ee in Fig. 2�a� has roots

at ��=0 with a negative slope and at ��=� with a positive
slope; the two states with ��= ±� are equivalent since the
effective coupling functions are 2� periodic by definition.
The fixed point at ��=0 is a unique stable state in this case.
Therefore, the phase-model analysis predicts that the phase
difference of any initial values except ��=� would eventu-
ally converge to ��=0. This result can be verified by di-
rectly integrating the original equation �5� with various ini-
tial values of ��. These simulation results are also shown
aside in Fig. 2�e�. The analysis together with the numerical
simulation, therefore, shows that the E-E connection has the
role of stabilizing the in-phase synchronization of the
coupled oscillators. Notice that the slope of �−

ee at ��=� is
very small, which implies a weakness of the unstable state;
�� starting near ��=� escapes from the fixed point very
slowly.
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Recall that the E cell and I cell in the column are 1:2
locked; every other firing of the I cell inhibits the firing
of the E cell, which makes the firing period T of the E cell
twice that of the I cell. The antiphase state corresponds to
alternating firings between the intercolumnar E cells. In this
situation a competition exists for firing an E cell between the
inhibition from the intracolumnar I cell and excitation
through the intercolumnar E-E connection. The instability of
the antiphase state implies that the inhibition from the I cell
is yet strong enough to make the excitation from the E cell
ineffective. The small values of �delay− near ��=� in Fig.
2�a� also indicate that this inhibition is dominant in the wide
range of �� near ��=�.

�ii� I-I connection. The function �−
ii has two stable fixed

points at ��=0, � and two unstable fixed points at ��
= ±� /2 as shown in Fig. 2�b�. The unstable states form the
boundaries for the attraction basins of the stable states as can
be seen from Fig. 2�f�. The I-I connection stabilizes two
states which are the in-phase and the antiphase synchroniza-
tion, respectively. This bistability can be surpassed with the
dominance of the in-phase synchronization by incorporating
a strong E-E coupling connection, which has been proposed
as an underlying mechanism for the transition between the �
rhythm and � rhythm observed in the hippocampal CA1 area
of the brain �8,9�. Notice that the I-I connection gives rise to
an indirect interaction between E cells via the intracolumnar
connections.

�iii� I-E connection. The function �−
ie has four stable fixed

points at ��=0, ±� /2, and � and four unstable fixed points
pairwisely located near the stable fixed points at ��=0 and
� as shown in Fig. 2�c�. The unstable states form the bound-
aries for the attraction basins as seen from Fig. 2�g�. The I-E
connection stabilizes three states: the in-phase, the antiphase,

and the out-of-phase states, respectively. The in-phase syn-
chronization is stable even though its attraction basin is only
small. The stable states at ��= ±� /2 are the most dominant
in that their attraction basins are the largest. Notice that the
structure of �−

ie is almost exactly reversed compared to that
of �−

ii except for the existence of small attraction basins at
��=0 and �. Similar to the I-I connection, the I-E connnec-
tion also provides an indirect interaction between the E cells.
In this case, however, the path is less indirect in that the I cell
is connected directly to the intercolumnar E cell, which
might be the origin of the reversed structures of the effective
coupling functions.

�iv� E-I connection. The function �−
ei roughly has the

structure reversed from that of �−
ee as shown in Figs. 2�d� and

2�h�. The role of the E-I connection is stabilizing the an-
tiphase state and preventing the in-phase state, which implies
that the indirect interaction between the E cells through the
E-I connection in cooperation with the intracolumnar I-E
connection destabilizes the in-phase synchronization.

Now, in the presence of multiple connections, the
total effective coupling function is given as a superposition
of all the constituent effective coupling functions, Eq. �7�,
multiplied by the corresponding synaptic coupling strengths:

�total = cee�
ee + cii�

ii + cie�
ie + cei�

ei. �8�

Notice that the original system, Eq. �1�, is highly nonlin-
ear, especially in those perturbative coupling connections.
Meanwhile, Eq. �8� shows that the total effect of the multiple
connections is given as a nice linear superposition of the
contributions from the individual connections. This is the
very advantage of using the phase-model reduction method.

The nonlinear bahavior of the system can now be ana-
lyzed rather straightforwardly by examining the function

FIG. 2. �Color online� The antisymmetric part of the effective coupling function associated with each connection �a�–�d�. The circles
denote the unstable fixed points, and the squares denote the stable fixed points. The time courses of the phase difference are plotted starting
at various initial conditions for each connection �e�–�h�. An initial period of 1000 msec before turning on the connection is given for every
plot for better tracing the time course. The horizontal axes are rescaled according to the convergence rates. The �coupling� connection
strength is set as c=0.01 for all simulations.
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�−
total. To be specific, we set cii=0.002, cei=0, and

cie=0.005 and vary cee from 0.001 to 0.1. The total effective
coupling functions for each case are shown in Fig. 3�a�–3�d�.
For small values of cee the in-phase and antiphase states are
stable fixed points and there also exist a pair of the out-of-
phase states which are unstable. As cee is increased, however,
those unstable out-of-phase states approach the antiphase
state. Eventually, as shown in Fig. 3�d�, the out-of-phase
states disappear and the stable antiphase state becomes
unstable.

The details of the above bifurcation scenario are exam-
ined and presented in Fig. 3�e�. As one can see in the figure,
as cee is increased, the stable antiphase state undergoes the

supercritical pitchfork bifurcation at cee	0.0788 �denoted
by A in the figure�. At this point the antiphase state becomes
unstable and a pair of the stable out-of-phase states are born.
These stable out-of-phase states collide in pair with unstable
out-of-phase states that are shown in Figs. 3�a�–3�c� and dis-
appear at cee	0.0807 through the saddle-node bifurcation
�denoted by B�. Notice that the in-phase state at ��=0
remains stable in this range of cee.

V. MULTIPLE CONNECTIONS WITH TIME DELAYS

The analysis of the preceding section shows how to locate
the parameter regime of the stable synchronization. How-
ever, the existence of the stable synchronization, even to-
gether with its uniqueness, may be yet insufficient in
establishing itself in a practical sense. Then, the convergence
rate to the synchronization becomes important. For instance,
as we have already seen such a hint from Fig. 3�d�, the con-
vergence to the existing synchronized state can take a long
time. Especially, this slow convergence can be a crucial
problem in establishing synchronization over an ensemble of
spatially distributed neuronal oscillators. In this section we
will show that the multiple connections with different con-
duction time delay among neuronal oscillators can promote
synchonization over an oscillator ensemble in an efficient
way.

In our present model the above-mentioned slow conver-
gence is the most problematic for the E-E connection case,
which is noticeable from the behavior of the effective cou-
pling functions as shown in Fig. 2; the shape of the effective
coupling functions is attributed to the specific nonlinear fea-
ture of the limit cycle in consideration. Therefore, we here
consider only the effect of the intercolumnar E-E connec-
tions and shut off all the other intercolumnar connections.
The superscript in �ee will be omitted for simplicity. The
intercolumnar synaptic current to the E cell of Eq. �6� is then
modified as

Ie
inter = �

j

cee
j s̄e�t − 	 j�V , �9�

where cee
j is the jth E-E connection with the conduction time

delay 	 j.
The evolution of the phase difference ��, Eq. �4�, is also

modified as �14�

d��

dt
= �delay−

total ���� = �
j

cee
j � j

delay−����

= �
j

cee
j ����� + 
 j� − ��− �� + 
 j�� , �10�

where 
 j =2�	 j /T and T=50.9 msec. Similar to Eq. �4�, the
total effective coupling function is given as a linear superpo-
sition of the effective coupling functions with different time
delays �9�.

The effect of the time delay can be understood in an in-
tuitive way using graphs. First, consider the case of no time
delay as a reference. The effective coupling function �����
is plotted using a solid line in Fig. 4�a�. The antisymmetric
part of ����� is obtained first by reflecting it with repect to

FIG. 3. The antisymmetric part of the total effective coupling
function. The nonlinear evolution of �−

total is shown as cee is in-
creased: �a� cee=0.001, �b� cee=0.01, �c� cee=0.05, and �d�
cee=0.1. The other parameters remain fixed as cii=0.002, cei=0,
and cie=0.005. The circles denote the unstable fixed points, and the
squares denote the stable fixed points. The bifurcation structure of
the antiphase state is shown in detail in the panel �e�. A denotes the
pitchfork bifurcation point at cee	0.0788, and B denotes the
saddle-node bifurcaton point at cee	0.0807. The traces of the
stable states and the unstable states are denoted with the solid lines
and the dotted lines, respectively. The in-phase state at ��=0
remains stable in this range of cee.
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��=0 to get ��−��� and substracting this from �����. The
graphs for ��−��� and �−���� are plotted using a dotted
line and a dashed line, respectively. From the construction
scheme, one can notice that ��=0 and ��=� are always
zeros of �−���� which correspond to the fixed points of Eq.
�10�. The stability of each fixed point is determined again
from the slope of �−����, which is just the doubled slope of
����� from the construction scheme.

Now, let us consider the case of time delay and take
	=13 msec specifically. This time delay leads to a phase
shift of the effective coupling function by the amount of 

=2�	 /T. The result is the left-shifted graph of ����+
� as
plotted with a solid line in Fig. 4�b�. Its antisymmetric part
����+
�−��−��+
� is constructed in the same way as
above, and the corresponding graphs are plotted using the
same line types. Again, the stability of the fixed points is

determined from the doubled slope of ����+
� at each
fixed point. The in-phase state at ��=0 in this specific case
turns out to be stable since the minimum of ����+
�, yet
lies in the positive side of ��, and thus the slope
����+
� at ��=0 is negative. Notice that the peaks of
�−���� are shifted by the amount of 
 in both directions
away from ��=0.

In the presence of multiple connections, the role of each
synaptic connection can be understood in the similar proce-
dure as in the preceding section. To understand how the mul-
tiple connections work, it suffices to examine the simplest
case. That is, we will consider the case of two connections
with time delay 	1=0.5 msec and 	2=13 msec. The effective
coupling functions for the individual connections and in the
presence of the both connections are shown in Fig. 5 together
with the time evolution of the phase difference for each case.

From Fig. 5�a�, in comparison with Fig. 2�a�, it is seen
that the effective coupling function for the time delay
	1=0.5 msec is almost same as for the case of no time delay.
The function �delay− has basically the same structure: two
fixed points at ��=0 and �. Only the maximum and mini-
mum peaks shift slightly away from ��=0. The fixed point
at ��=0 corresponds to the stable in-phase state. Since the
magnitude of �delay− determines the convergence rate, one
can notice that the initial values near ��=0 converge rapidly
toward the in-phase state, as can be confirmed from Fig.
5�d�. The other fixed point at ��=� corresponds to the an-
tiphase state. The antiphase state is unstable since �delay− has
the positive slope. Therefore, the nearby initial ��’s diverge
away. That is, any initial values of �� except � fall in the
attraction basin of the in-phase state and all are attracted to
��=0 asymptotically in time. However, as noticed from the
small magnitude of �delay−, the divergence rate is very small
and the attraction is very slow as can be confirmed from Fig.
5�d�. Notice the elongated time scale of the convergence in
the figure.

When the time delay is 	2=13 msec, comparable to the
period T, the shift of the peaks become even larger as shown

FIG. 4. The effect of time delay on the effective coupling func-
tions. The case of no time delay is shown for reference in �a� and
the case of time delay 	=13 msec is shown below in �b�. The origi-
nal effective coupling function, its reflected graph, and its antisym-
metric part are plotted together in each panel using different line
types: the solid, the dotted, and the dashed lines, respectively.

FIG. 5. The antisymmetric part of the effec-
tive coupling functions in the presence of the
conduction time delay. The time courses of the
phase difference are plotted together in the right
panels starting at various initial conditions. The
plots are when a single connection with the time
delay 	=0.5 msec exists �a�, �d�, when a single
connection with the time delay 	=13 msec exists
�b�, �e�, and when the multiple connections in-
cluding the both exist together �c�, �f�.
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in Fig. 5�b�. The stability of the fixed points remains the
same as for the case of 	1=0.5 msec. However, the more
important change occurs in the speed of the �� dynamics.
The convergence to the in-phase state becomes very slow
near ��=0; notice the time scale of the convergence in Fig.
5�e�. Meanwhile, the initial values near the antiphase state
diverge away very rapidly. That is, the role of the time delay
of 	2=13 msec is a strong destabilization of the antiphase
state. As one can see from Fig. 2, the E-E connection is the
only source for the instability of the antiphase state. How-
ever, the E-E connection alone is ineffective since the diver-
gence rate from the antiphase state is extremely small, as
argued with Fig. 2�a� in the preceding section. Here, one can
realize that a sufficient amount of the time delay provides an
effective way in destabilizing the antiphase state.

When the connection is multiple with two different time
delays together, the corresponding function �delay−

total is just a
superposition of the effective coupling functions for
individual connections, as shown in Fig. 5�c�. The stability of
the fixed points still remains the same. However, the dynam-
ics of �� now manifests both features of the individual con-
nections: the rapid divergence from the antiphase state and
the rapid convergence to the in-phase state. Consequently,
over a wider range of initial values of �� the in-phase syn-
chronization can be established rather rapidly; notice the
drastic change in the time scale of the convergence in Fig.
5�f�.

One can straightforwardly extend our analysis to the case
of the multiple connections with various time delays among
neuronal oscillators. In this case each connection of different
time delay plays the role of a relay midway to pushing ��
from the antiphase toward the in-phase state. Therefore, the
multiple connections with different time delays can promote
synchonization over an oscillator ensemble in an efficient
way.

VI. SUMMARY AND DISCUSSION

Synchronization of the coupled neuronal oscillators with
multiple connections is analyzed, focusing on the roles of the
individual connections in their contribution to the synchroni-
zation. The dynamics of the phase difference between the
oscillators are well described in the scheme of phase-model
reduction, which is determined solely from the total effective
coupling function. The total effective coupling function is
given just as a linear superposition of the individual effective
coupling functions associated with each connection. The
fixed points corresponding to the various phase-locked states
are identified. The shape of the effective coupling function
determines the existence and the stability of those fixed
point. The convergence and divergence rates near the fixed
point are also determined from the amplitude of the effective
coupling function. The bifurcation analysis clarifies how the
coupling nature of the system changes in a nonlinear fashion
and how the stable antiphase state loses its stability and the
in-phase state becomes prevalent, which provides an intui-
tive understanding of the transition from the � rhythm to the
� rhythm observed in the brain.

The conduction time delay in the coupling connection
induces the amplitude peaks of the effective coupling

function to shift toward the antiphase state. When the amount
of the time delay is comparable to the period T of the oscil-
lation, this implies that the divergence rate from the
antiphase state can be enhanced significantly. In the presence
of multiple connections with different time delays, each
connection plays a role of a relay midway to pushing ��
from the antiphase toward the in-phase state. Therefore, the
multiple connections with different time delay can promote
synchonization over an oscillator ensemble in an efficient
way.
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APPENDIX: HIPPOCAMPAL CA1 MODEL

In addition to Eq. �5�, the full equation for the coupled
oscillator model includes the equations for the gating
variables. The gating variables m, h, n, and w satisfy the
following equations, respectively:

dm

dt
=

0.32�54 + V�
1 − e−�V+54�/4 �1 − m� −

0.28�V + 27�
e�V+27�/5 − 1

m ,

dh

dt
= 0.128e−�50+V�/18�1 − h� −

4

1 + e−�V+27�/5h ,

dn

dt
=

0.032�V + 52�
1 − e−�V+52�/5 �1 − n� − 0.5e−�57+V�/40n ,

dw

dt
=

w��V� − w

	w�V�
, �A1�

where

w��V� = 1/�1 + e−�V+35�/10� ,

	w�V� = 400/�3.3e�V+35�/20 + e−�V+35�/20� . �A2�

The temporal variation of the synaptic currents, depicted
with the variables s�t� and s̄�t�, is modeled as the so-called
�-function type. se�t� and si�t� satisfy the following equa-
tions, respectively �note that the barred variables for the in-
tercolumnar synapses satisfy the same form of the equations
as for the unbarred variables�:

dse

dt
= 5
1 + tanh

V

4
��1 − se� −

se

2
,

dsi

dt
= 2
1 + tanh

V

4
��1 − si� −

si

15
. �A3�
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All parameters of the equations are set in accordance
with the standard experimental conditions. The capacitance
is set to C=1 F/cm2. The g’s are the ion channel
conductances in mmho/cm2, and the E’s are the reversal
potentials in mV for the corresponding ions and

synapses: gl=0.1, gNa=100, gK=80, gAHP=1, El=−67,
ENa=50, EK=−100, Eex=0, and Einh=−80. The applied
dc currents are set to Ie

appl=7.9 A/cm2 for the excitatory
neuron and to Ii

appl=0.5 A/cm2 for the inhibitory
neuron.
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